NAME	DATE DATE	•
SCHOOL:	SIGNATURE	•
233/3		
CHEMISTRY		
PAPER 3		
July 2025		
2¼ HOURS		

LAINNAKU II FORM IV JOINT EVALUATION 2025

Kenya Certificate of Secondary Education 2025

INSTRUCTIONS TO CANDIDATES

- ❖ Write your name, index number, name of the school and the date in the spaces provided.
- ❖ You are required to spend 15 minutes of the 2½ hrs reading through the paper and make sure you have all the apparatus and chemicals needed for the practical.
- ❖ Answer all the questions in the spaces provided after each question
- Electronic calculators and mathematical tables may be used
- ❖ All working must be clearly shown where necessary.

For Examiners Use Only

Question	Maximum score	Candidate's
		Score
1	25	
2	08	
3	07	
Total	40	

1 (A). You are provided with:

- Solution Y₁ containing 3.15g of a dibasic acid represented as H₂A dissolved to make 250cm³ of a solution
- Solution Y₂, 0.2M sodium hydroxide.
- Phenolphthalein indicator.

You are required to:

- (i) Titrate solution Y_1 against solution Y_2 .
- (ii) Determine the molecular mass of the organic acid.

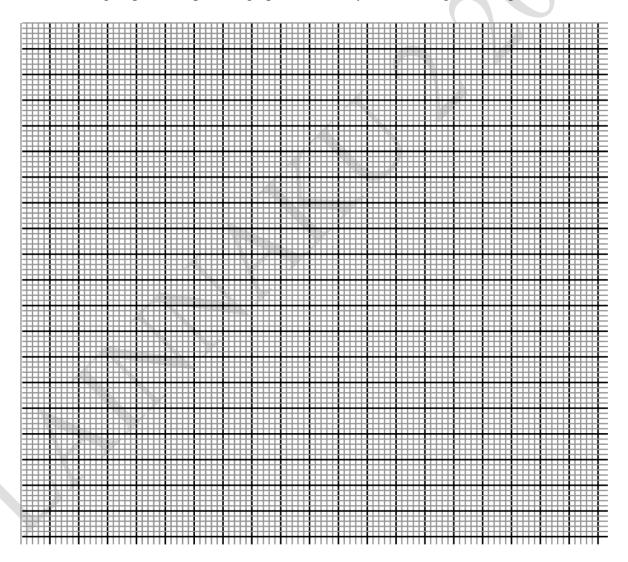
Procedure:

TABLE 1

Clean the burette and fill it with solution Y_1 . Using a pipette and pipette filler, pipette 25.0cm³ of solution Y_2 into a 250ml conical flask. Add 2 to 3 drops of phenolphthalein indicator into the solution in the conical flask and then titrate with solution Y_1 . Record your results in the table 1 **below**. Repeat the procedure two more times and complete the table.

TADLE I	1	2	3	
Final burette reading				
Initial burette reading				
Volume of solution Y ₁ (cm ³)				
				(4marks)
(a) Calculate the average volume	ne of solution	Y_1 used.		(1mark)
	,			
(b) Write an equation for the re	action betwee	on the acid	HaA and s	odium
hydroxide solution.	Eaction betwee	on the actu	112A and s	(1mark)
				` '
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
(c) Calculate: - (i) The concentration of the aci	d solution V	in moles ne	er litre	(2marks)
(i) The concentration of the act		-		,
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

	(ii)	The concentration of acid Y_1 in grams per litre.	(1mark)
	(iii)	The relative molecular mass of the acid Y_1 .	(1mark)
(c)	(H =	n that the formula of the acid is H_2A . xH_2O . Calcula 1.0, $O = 16.0$, $A = 88.0$).	(2marks)
•••••			
• • • • • • •			
1. (B)	You are p	provided with solid E weighed exactly of 4.0g.	
(Y	ou are req	uired to determine the solubility of solid E at different	nt temperatures.)
Procedure	<u>e</u>		
Fill a clear	n burette v	with distilled water. Transfer 4cm ³ of distilled water	to a boiling tube containing the
entire soli	d E provid	led. Heat the mixture while stirring with the thermo-	meter to a temperature of about
80°C. (W	hen the en	tire solid will have dissolved). Allow the solution to	cool while stirring with the
thermome	ter. Note t	he temperature at which crystals start to appear and	record the temperature in the
table below	w. To the	same solution, add 2cm ³ of distilled water from the b	ourette, heat the mixture while
stirring wi	th the the	rmometer gently until when the entire solid just disso	olves. Allow the mixture to cool
and record	I the temp	erature at which crystals first appear in the table belo	ow. Repeat the procedure three


(6 marks)

more times and record the temperature in the table.

Complete the table of solubility of solid ${\bf E}$ at different temperatures.

Volume of water in	Temperature at which	Solubility of solid E in
boiling tube (cm ³)	crystals first appear(°C)	g/100g of water
4		
6		
8		
10		
12		

(a) On the grid provided plot the graph of solubility of solid ${\bf E}$ against temperature (3marks)

(b)	Use the graph to determine the mass of solid de cooled from 55°C to 50°C	eposited when 94g of a saturated solution is (3 marks)
•••		
•••		
•••		
•••		
•••		
•••		
(c)	Use your graph to determine the temperature at	which 40g of solid E would dissolve in 50g
(0)	of water	(1mark)
	02 N 440 2	
••••		
••••		
••••		
2. You	are provided with solid M. Carry out the tests be	elow and record your observations and
inf	erences in the spaces provided.	
(a) Pla	ce all the solid in a boiling tube and add about 80	cm ³ distilled water, shake and divide the
	xture into four portions.	
		Tufananaa
Oi	bservation	Inference

(1 Mark)

(1 Mark)

(b)To the fir	st portion,	add 3	drops lead	(II)	nitrate so	lution
---------------	-------------	-------	------------	------	------------	--------

Observations	Inferences
(½ Mark)	(1 Mark)

(c)To the second portion, add 3 drops of acidified barium nitrate solution.

Observations	_	Inferences
	(½ Mark)	(1 Mark)

(d)To the third portion, add a few drops of sodium hydroxide solution till in excess

Observation(s)	Inferences
(1 Moule)	(1 Mode)
(1 Mark)	(1 Mark)

(e)Identify the ions in solution M	(1mk)
Cation	
Anion	

3. (a) You are provided with solid N. Carry out the tests in (a) and (b) and write your observations and inferences in the spaces provided.

(i) Place about a third of solid N on a metallic spatula and burn it in a non-luminous flame

Observations	Inferences
	(1Mark) (½ Mark)

(b)Place a small portion of solid N in a test tube and add about 2 cm³ of sodium hydroxide solution.

Observations	(Inferences
	(1 Mark)	(½ Mark)

(c) Place the rest of solid N in a boiling tube. Add about 10 cm ³ of distilled water. Shake the mixture
well. Retain the mixture to use in the tests in (c) (i) to (iii).

(i) To 2cm³ of the mixture in a test tube, add 2 drops of acidified potassium manganate (VII) solution provided.

Observations	Inferences
(1 Mark)	(½ Mark)

(ii). To 2cm³ of the mixture in a test tube add solid sodium hydrogen carbonate.

Observations	Inferences
(1 Mark)	(½ Mark)

(iii). Use the universal indicator paper provided to determine the pH of the mixture obtained in (c) above.

Observation	Inferences
(½ Mark)	(½ Mark)